Metabolomic Analysis of Siderophore Cheater Mutants Reveals Metabolic Costs of Expression in Uropathogenic Escherichia coli

نویسندگان

  • Haitao Lv
  • Chia S. Hung
  • Jeffrey P. Henderson
چکیده

Bacterial siderophores are a group of chemically diverse, virulence-associated secondary metabolites whose expression exerts metabolic costs. A combined bacterial genetic and metabolomic approach revealed differential metabolomic impacts associated with biosynthesis of different siderophore structural families. Despite myriad genetic differences, the metabolome of a cheater mutant lacking a single set of siderophore biosynthetic genes more closely approximate that of a non-pathogenic K12 strain than its isogenic, uropathogen parent strain. Siderophore types associated with greater metabolomic perturbations are less common among human isolates, suggesting that metabolic costs influence success in a human population. Although different siderophores share a common iron acquisition function, our analysis shows how a metabolomic approach can distinguish their relative metabolic impacts in E. coli.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Siderophore biosynthesis coordinately modulated the virulence-associated interactive metabolome of uropathogenic Escherichia coli and human urine.

Uropathogenic Escherichia coli (UPEC) growth in women's bladders during urinary tract infection (UTI) incurs substantial chemical exchange, termed the "interactive metabolome", which primarily accounts for the metabolic costs (utilized metabolome) and metabolic donations (excreted metabolome) between UPEC and human urine. Here, we attempted to identify the individualized interactive metabolome ...

متن کامل

Quantitative Metabolomics Reveals an Epigenetic Blueprint for Iron Acquisition in Uropathogenic Escherichia coli

Bacterial pathogens are frequently distinguished by the presence of acquired genes associated with iron acquisition. The presence of specific siderophore receptor genes, however, does not reliably predict activity of the complex protein assemblies involved in synthesis and transport of these secondary metabolites. Here, we have developed a novel quantitative metabolomic approach based on stable...

متن کامل

Antibiotic resistance pattern and serotyping of Escherichia coli producing siderophore in people with urinary tract infection

Urinary tract infection is one of the most common bacterial infections of human. The most common agent of urinary tract infection is Escherichia coli . This study aims to determine the prevalence of uropathogenic E. coli urinary infection in human with different antimicrobial resistance, and quantitive and qualitative study of siderophore production and their association with the ability to cau...

متن کامل

Redundancy and specificity of Escherichia coli iron acquisition systems during urinary tract infection.

Uropathogenic Escherichia coli (UPEC), the predominant cause of uncomplicated urinary tract infection (UTI), utilizes an array of outer membrane iron receptors to facilitate siderophore and heme import from within the iron-limited urinary tract. While these systems are required for UPEC in vivo fitness and are assumed to be functionally redundant, the relative contributions of specific receptor...

متن کامل

Zinc oxide nanoparticle reduced biofilm formation and antigen 43 expressions in uropathogenic Escherichia coli

Objective(s): This study aimed to investigate the effect of zinc oxide nanoparticles (ZnO-np) on biofilm formation and expression of the flu gene in uropathogenic Escherichia coli (UPEC) strains. Materials and Methods: Minimum inhibitory concentration (MIC) of ZnO-np was determined by agar dilution method. The effect of MIC and sub-MIC concentrations of ZnO-np on biofilm formation were determin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2014